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Abstract

A central question in the theory of strategic innovation is whether
technological competition between initi asymmetric firms favours
the incumbent (so producing persistent dominance) or its rivals (in
which case we have action/reaction). The existing literature contains
a variety of models, some generating the first outcome and others the
second. These models are built on such different assumptions that it is
often difficult to see which features of the models it is that determine
the conclusion reached. In this chapter we develop a framework within
which we can both set out much of the existing literature and then
extend it, getting, in the process, a clearer idea of the factors that
matter in determining each of the two outcomes.

In §2 we review the standard model of a single innovation under
certainty. Here the only force that affects a firm’s decision is the
competitive threat that it faces from its rival. This threat is measured
by the fall in future profits that it will suffer if one of its rivals
innovates ahead of it. We show how the outcome of the competition
to innovate depends on the size of the innovation and the nature
of competition and also that such single innovation models can be
very misleading when we think of firms facing a continual pressure
to innovate. We model this through a sequence of innovations. In
a sequential framework, the distinction between product and process
innovation becomes vital and the conclusions reached under process
innovation are almost precisely reversed under product innovation.

A major limitation of models with certainty is that firms that
know that they will be losers commit no resources to R&D. This is
particularly important in a sequential framework, since R&D costs
incurred in future races enter the calculations of the profitability of
current races. In §3 we introduce a model of a single innovation in

which there is uncertainty over the date of discovery, This brings into
play a second incentive to innovate—the profit incentive—which is
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reflected in the difference between a firm’s current profits and those
it will earn if it innovates. We show that the outcome of the race can
be determined by knowing the magnitude of these two incentives for
each firm, and that the effect of the assumptions employed in most of
the existing models is to artifically constrain the relative magnitudes
of one or other of these incentives.

In §4 we examine sequential innovation under uncertainty, and
argue that another factor that now has to be taken into account
is reflected in the combined effect of information dissemination and
learning-by-doing, since this determines whether followers can leapfrog
the leader, or can only gradually caich up. We show how this, in
conjuction with most of the factors discussed in §2, determines the
nature of the outcome. While the possibility of leapfrogging generally
leads to action/reaction, models with a catch-up structure generate a
variety of outcomes depending on the nature of competition and the
rate of technical change.

1. Introduction

Some of the major advances in mathematical economics over the last
twenty years have occurred in game theory, and, as a result, game
theoretic models are being used in many areas of economics such as
macroeconomics where strategic behaviour had not previously been
analysed. The predominant area of application, however, remains
the theory of imperfect competition and the analysis of industrial
structure.

A particularly important type of non-price competition between
firms is technological competition. This is where firms compete to
introduce new processes or products that will give them some com-
petitive edge over their rivals (including potential entrants), or, more
defensively, will at least prevent their rivals from getting too great an
advantage over them. There have been considerable advances in the
analysis of this particular kind of strategic competition—especially
over the last ten years—and in this chapter we wish to review and
synthesize some of these developments.

A central question in this area is whether this dynamic process
of competition is one in which incumbents maintain their position of
supremacy (or indeed pull further ahead of their rivals) or whether they
are overtaken by some rival whose incumbency is itself only short-lived.
The former outeome we call persistent deominance, while the latter
we describe as action/reaction, though it is perhaps more familiarly
known by the Schumpeterian terminology of ‘creative destruction.’

There are a number of reasons for being interested in this ques-
tion. The first is that there is a great deal of concern expressed by
governments and others about the relative position of firms in ‘their’
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country—particularly in key ‘high-tech’ industries—and an
understanding of the process of dynamic competition provides a useful
framework within which the basis for this concern can be analysed
and possible policy options examined. The second is that such an
understanding will clearly give us a framework in which the evolution
of industry structure is endogenous to the process of dynamic com-
petition: for whether dynamic competition produces persistent domi-
nance or action /reaction will have a major bearing on how competitive
industries are, while we would expect that in turn the outcome of the
process of dynamic competition will be affected by the existing market
structure. As we will see, when industry structure is determined in
this dynamic fashion, many of the prescriptions of static competitive
theory can be overturned.

There are many factors that influence the absolute and relative
amounts of resources that firms devote to R&D. One important factor
is the technological opportunity that firms face, which is, in turn,
related to the scientific base of the industry (Rosenberg 1974). This
factor is particularly important in understanding inter-industry levels
of R&D expenditure. There is also some evidence that due to the
existence of learning-by-doing in R&D, successful firms find it easier
to make further advances than less successful ones (Phillips 1971).
These two factors clearly influence the ability of firms to innovate. Of
course in analysing strategic innovation the major focus is clearly going
to be on the incentives of firms to innovate, and here we expect that
the current and anticipated structure of the market and the nature of
competition between firms will be important in determining both the
absolute and the relative incentives of firms to innovate. It is impor-
tant to appreciate, however, that those factors which affect the ability
of firms to innovate will typically also influence their incentives to do
so. Thus while learning-by-doing effects clearly enhance the ability of
incumbents to innovate, they will also give them incentives to maintain
their leadership and so retain these benefits, while simultaneously
giving rivals incentives to stop incumbents getting too far ahead and
exploiting these advantages. So one should not conclude that the
presence of these effects leads in any automatic way to persistent
dominance being the outcome of strategic innovation.

Given the variety of factors at work in determining the outcome
of strategic dynamic competition amongst firms, it is perhaps not
surprising that the existing literature on this topic i1s rather confusing,
comprising numerous different models yielding conflicting predictions
about the outcome of the innovative process. Since these models
are typically built on very different assumptions, it is often difficult
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to see just what factors are responsible for producing these differing
predictions. The major purpose of this chapter is to provide a unifying
framework in which most of these models can be set, and to go some
way towards providing a more general model encompassing many of
these more specific models.

While we will try to cover much of the literature on strategic
innovation, there will be some important areas we do not examine. For
example, throughout the chapter we will focus exclusively on models
where the number of firms engaged in R&D competifion is fixed in
advance at two. Consequently we will have nothing to say about the
role of innovation in generating entry barriers, so making the number of
firms endogenous. We ignore this issue because the work of Dasgupta
and Stiglitz (1980a,b, 1981) has provided a good understanding of it,
and the material is well covered in the excellent review by Dasgupta
(1986).

The structure of the chapter is as follows. In the next section we will
examine a widely used class of models of innovation under conditions
of certainty. We will start by considering the simple case of a single
innovation and then show that while this gives some essential insights,
single-innovation models can be very misleading, and that a proper
understanding of the issues we are concerned with can only come from
models that analyse sequences of innovations. The second part of this
section will be devoted to such sequential models.

The models of certainty considered in §2 capture one impeortant
incentive to innovate—what we will call the competitive threat—but
there is another important incentive that affects innovation decisions—
the profit incentive—and this arises when innovation is modelled as
a game of timing. While this kind of game can arise under both
certainty and uncertainty, and while games with uncertainty need not
be games of timing, much of the literature analysing innovation under
uncertainty treats the uncertainty as arising over the timing of the
innovation. Section 3 examines a general model of such games for
the case of a single innovation, and shows how an understanding of
these two incentives goes a long way to explaining the outcome of
races, and to unifying various models in the literature. Finally, §4
examines sequential models under uncertainiy—models which combine
the insights from the various incomplete models considered so far.

2. Certainty

2.1 A single innovation

To fix ideas we will start with the following model. There are two
firms producing an identical product under constant returns to scale
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technologies. As a result of earlier innovation successes, the firms’ unit
costs are different, with ¢; > ¢;, where ¢; is the unit cost of firm 1.
A new technology is discovered which lowers costs to ¢3 < €3, and an
infinitely lived and completely effective patent for this technology is
put up for auction. The patent is awarded to the firm which values
it most highly, this firm having to bid an amount equal to the value
placed on it by the other firm. The losing firm pays nothing. If
the current low-cost firm wins the auction we will say that we have
persistent dominance, while if the current high-cost firm wins we will
have action/reaction. Which of these two outcomes will occur?

To answer this question we have to specify the nature of competi-
tion in the product market. For the moment suppose it is Cournot, and
let w(a,3) be the (present value of) profits in a Cournot equilibrium
of a firm whose unit costs are a while those of its rival are 8. Then
if the current incumbent wins the patent its profits will be w(ej,¢;),
while, if the rival firm wins, the incumbent’s profits will be m(c2,¢3).
Thus the value that the incumbent places on the patent, and hence
the maximum bid it is willing to make, B', is

BII:?T[Cg,C]}—'?T{EQ,Ca:]. (2.1)

Similarly the maximum bid the non-incumbent (or challenger or fol-
lower) is willing to make, BY, is

Bf = w(es,ez) — w(ey,ca). (2.2]

These maximum bids reflect one of the major incentives driving firms
to innovate—an incentive that we will call the competitive threat—
since they measure the fall in its future profits that each firm will
suffer if its rival were to successfully innovate ahead of it.

If we now let o(a,) be the industry profits made in the Cournot
equilibrium, when the unit costs of the low-cost firm are «, those of
the high-cost firm 3, then, ignoring boundary cases where B' = Bf,
it follows from (2.1) and (2.2) that we will have persistent dominance
iff

alea,er) > olea,ea). (2.3)

To understand when (2.3) is satisfied, we need to know how industry
profits vary with the costs of the high-cost firm. There are two forces
at work. First, holding quantities, and hence the price fixed, the lower
are the costs of the high-cost firm the greater are its, and hence the
industry’s, profits. But of course quantities and price will not remain
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fixed as the costs of the high-cost firm vary. For we know that in a
Cournot equilibrium the price depends on the average of the costs of
the two firms, and so as the costs of the high-cost firm rise so too
does the price. This increases the profits of the low-cost firm until
ultimately the cost differential is so large that the low-cost firm can
earn monopoly profits, which dominate the industry profits in any of
the other Cournot equilibria.

Intuitively we expect that when the costs are equal, a small increase
“in the costs of one of the firms always lowers industry profits, since
there is little scope for the low-cost firm to exploit this cost differential,
and so the first of the two effects mentioned above will dominate.
However, once the cost differential is large, the output of the high-
cost firm will be so low that a further increase in its costs will have
a negligible impact on industry profits through the first effect, while
the low-cost firm will have more scope to exploit these higher costs
and move industry profits closer to those obtained under monopoly.
If we therefore hold the costs of the low-cost firm constant, and plot
industry profits as a function of the cost difference between the two
firms, we expect industry profits to be initially falling when the gap is
small, then rising until the gap becomes large enough for the low-cost
firm to choose the monopoly level of output.

This can readily be confirmed by examples. For example, when
the industry demand is iso-elastic, then if £, 0 < £ < 1, is the inverse
elasticity of demand, and

g=(enfes) =1 (2.4)

is the percentage gap between c¢; and the unit cost of a high-cost
firm with costs ¢}, it can be shown that if we plot ¢ as a function
of g alone we obtain a relationship like that shown in Fig. 2.1, where
g = €/(1 — €) is the critical gap at which the low-cost firm can earn
monopoly profits #™ , and g, which depends on ¢, is the value of g
at which industry profits start to increase.

If we let g; be the gap corresponding to the costs ¢;, then, since
g1 = g2, we have the following results.

(i) gz = g (Drastic Innovation): Here the innovation is so great
that whichever firm wins will be able to act as a monopolist. In this
case industry profits are the same for both firms and the auction is
indeterminate.

(ii) g1 = g > g2: This case would arise if in the initial position the
cost difference between the two firms was sufficiently large that the
incumbent could act as a monopolist. The follower should therefore
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be thought of as an entrant. 1t is clear that in this case (2.3) is satisfied
and we will have persistent dominance. Notice that the essential
condition for this case to arise takes the form of a restriction on the
initial position of the firms, and that, as long as it is not drastic, the
size of the innovation is irrelevant.

(iii) g2 = g: Here the innovation is sufficiently large that the
current incumbent will be able to exercise more market power than
the follower, whatever the size of the initial gap between them. This

will therefore generate persistent dominance.

(iv) g1 < g: For this to arise both the initial gap between the firms’
costs and the size of the innovation must be small. From Fig. 2.1 it
follows that the inequality in (2.3) will be reversed, and so in this case
we will have aetion/reaction.

This list of cases does not exhaust all the possibilities, but in those
we have omitted the outcome will depend on the precise magnitudes
of g and g, so not much can be said at this level of generality. We
also want to note that a great deal of the discussion in the literature
has focused on case (ii), where persistence is particularly important
since it implies the maintenance of monopoly power.

It is also interesting to note that if we replace the assumption of
Cournot competition with that of Bertrand, then industry profits are
clearly going to be strictly increasing in g, Vg < g, thus generating
persistent dominance in all cases. Thus the more competitive static
behaviour can give rise to the less competitive dynamic outcome, a
peoint noted by Vickers (1986).

The model we have been considering is obviously highly stylized. In
particular, the auction feature of the model has two crucial limitations.
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(i) Because the date of the auction is fixed, all that matters is a
comparison of the future profits from winning, with those obtained
from losing—the competitive threat. However, if R&D expenditure
could affect the date of innovation, then, as explained more fully in
the next section, a second force operates—the profit incentive—and
this involves a comparison of future profits if successful with those
being currently earned.

(ii) The unsuccessful bidder commits no real resources to R&D.!

Katz and Shapiro (1987) have a model which overcomes the first
limitation, but suffers, as must any model of uncertainty, from the
second. Rather than explore their model here, we will postpone dis-
cussion of models of timing to the next section where we also introduce
uncertainty. In such a case both firms will typically commit resoureces
to R&D. All the essential features of the Katz and Shapiro model
appear in this more general framework.

Despite these limitations, the model we have been considering so
far captures in a very direct way the competitive threats that will be
an essential part of any model of strategic innovation, and has the
important property that the amount of R&D done by the successful
firm will be strongly affected by the valuation placed on the innovation
by the unsuccessful firm. Moreover, it yields crucial insights into the
effects that factors like the size of the innovation, the initial difference
between the firms, and the nature of market competition will have on
the outcome of the innovation process’

In the remaining sections of the chapter we will consider more
satisfactory models which do not rely on the auction story, and in
which, as a consequence, both firms will in general commit resources
to R&D. In the remainder of this section, however, we will focus on
another major limitation of the model—the restriction to a single
innovation.

!This is the equilibrium that would arise in a two-stage auction in which the
players had to pay what they bid. and in which the finn that valned the patent
most highly had to bid first. Clearly if this firm could choose whether to bid first or
second it would choose to bid second and then win the patent for virtually nothing,
If instead we allowed the current incwmbent to have s dominant move advantage
and be able to chinose whether to bid first or second, it would always cliouse to bid
second, in which case it obtains the patent virtually free when it values it more
highly, but the challenger has o pay the incumbent’s valuation in order to win,
This seems to give too much of an advantage to the ineumbent. particularly in a
sequential setting,

280 far, however, we have sald nothing about product innovation. We will deal
with this later in this section when we have examined sequential models.
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2.2 Sequences of innovations

There are two directions in which we can go to remove this assumption.
In the first we can introduce the idea that at any one time an incum-
bent might face the threat of innovation from a number of different
new technologies/new firms. The case of multiple technologies, for
example, is analysed by Dasgupta (1986) and, as one would intuitively
have expected, the possibility of dominance is weakened, for even if
the incumbent starts from an initial position of monopoly power, one
has to impose some relatively strong assumptions about increasing
returns to operating multiple innovations to guarantee the incumbent
will win all the innovations.

However, for our purposes the more interesting direction to pur-
sue is that of there being a sequence of single innovations. This is
important because if, as we have seen, the current position in which
firms find themselves is a key determinant of innovation success, then
an important reason for winning the current race will be the strategic
advantages conferred in future races. From this point of view there
are three crucial weaknesses in single-innovation models. The first
is that because whoever wins the race will, by assumption, be the
leader forever, firms cannot contemplate the possibility that a lead
lost today may be regained in the future. If this were a possibility
then there may be less to be gained by incumbents maintaining their
lead, and action/reaction becomes more likely simply because it could
now be a correctly anticipated future outcome, The second factor is
that in a single innovation the lead gained by the winner is fixed, and
so firms cannot contemplate the possibility that success now leads to
even greater success in the future. This latter fact could give current
incumbents even greater incentive to win, but equally strengthen the
desire of the follower to prevent incumbents opening up too great a
gap. Finally, in a sequential framework firms have to contemplate
not just the future profits that flow from gaining particular strategic
positions, but the costs of maintaining those positions. If winning
the current race makes rival firms even more determined to stop the
incumbent winning future races, then, from the incumbent’s point of
view, winning may be more expensive than losing. However, if winning
the current race so discourages rivals that they reduce their effort in
the future, then winning will mean that the future bid costs will be
lower if the incumbent wins than if he loses.

Because of these drawbacks, we feel that the whole issue of persis-
tent dominance versus action/reaction is better posed in the context of
sequential rather than single innovations, and there is now something
of a literature on such sequential models.
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The most immediate extension of the model considered so far is in
Vickers (1986), where now there is a sequence of T auctions, taking
place at times v = 1,...,T, each introducing a technology of succes-
sively lower cost

Cr42 < €r41, T=1,...,T.

To determine the outcome of this sequence of innovations, notice that
when the auction is being held at the start of period 7, the firm that

was successful in the previous period will enter the auction holding
the patent on the technology with costs c¢,4,, while the lowest cost
technology on which the rival firm holds a patent will be some cg,
k =1,...,7, which particular one depending on the outcome of earlier
auctions. To determine the outcome of the auction at 7,let V(e 42,cj)
be the present value at T of all current and future profits minus any
successful bids which it is (correctly) predicted will be made in future
auctions by the firm that has just won the T'" auction and so has
least-cost technology c,42, while the lowest cost technology on which
the rival firm holds a patent is ¢;, 7 = 1,...,t + 1. V(¢j,cr42) defines
the analogous value function for the other firm. Notice that, because
there are no future auctions,

V(ersz,cj) = mlersz,¢i); Viejersz) = 7(ej, erta).-

Then using the same reasoning as in the single-period case, the maxi-
mum bid made by the incumbent at T is

B*r = V[C,.+2,Ck] o= 1i”‘['|3:-+:l:“31'+2)1n (2'5}

while the maximum bid of the follower is

Bf = V(cry2,¢rq1) = V(ck,cria). (2.6)

With these definitions we can now in principle

(i) determine which firm wins the 7'" auction in every conceivable
situation in which this might take place

(ii) use this to define the value functions for the (T—1)'" auction
using what we now know are the correctly predicted outcomes of any
subsequent auction

(iii) determine the outcome of all possible T'—1 auctions and so, by
repeating this backward recursion argument, completely determine the
outcome of the sequence.
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Not surprisingly, general results are harder to come by than in the
case of single innovations. Vickers proves two results, the first of which
is

Result 1. If, forall r=1,...,T,and forall k =1,...,T,

a(cria,Cr41) > o(Crya,Cr)y (2.7)
then the outcome in every auction will be action/reaction.

To understand this result, notice first of all that (2.7) can be
(somewhat loosely) re-stated as requiring that industry profits be
strictly decreasing in the costs of the high-cost firm throughout the
entire range of costs spanned by the entire T" auctions. This condition
was seen to be sufficient to guarantee action/reaction in the case of a
single innovation, and so it certainly guarantees it in the T auction.
Suppose now we are entering the T'" auction, and we know that all
subsequent auctions will result in action/reaction. Then this implies
that the situation the industry finds itself in after the next auction
is complete will be that of one firm having costs ¢, 43, and the other
having costs ¢, 43, and that this will be true whatever the outcome of
the current auction in 7. But this means that when we look at the two
value functions that appear in the bids Bi and Bf, those components
that are attributable to future profits and future bid costs will be the
same for i as for f. Thus all that can matter in determining whether
or not B. > B{ are the components attributable to current profits,
and then (2.7) again guarantees that the outcome of the 7** auction
will be action/reaction. By induction, action/reaction occurs in every
auction.

This is a completely general argument establishing the result that,
provided conditions sufficient to establish action/reaction in a single
auction hold throughout the range of circumstances spanned by T
auctions, we will get action/reaction in every auction. However, (2.7)
is a much more stringent condition than the corresponding one-period
one, for it requires the inequality in industry profits to hold however
wide a gap opens up between the firms over the course of the sequence,
and this will require much slower rates of technical change than would
be implied by the single innovation.

Although (2.7} is only sufficient for action/reaction we can see
intuitively how failure to satisfy it could generate dominance. For
suppose that (2.7) held in the last period if the gaps were small, but
not if they were large. Then there would be action/reaction in the
last auction if firms entered it close together but not if they were far
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apart. But then the outcome of the auction in the previous period
could affect the kind of auction that will take place in the last period,
in which case the incumbent (at T—1) will enter the auction knowing
that a win at T—1 guarantees a win at T', while the follower knows a
win at T-1 guarantees a loss at T. This does not automatically imply
that the incumbent at T—1 will necessarily win, because though his
guaranteed win at T" will bring it more profits, the firm may have to
bid more in T to get those.
The second result that Vickers proves is

Result 2. If the high-cost firm’s profits are always zero, and
industry profits are strictly increasing in the costs of the high-cost
firm, then the outcome is always persistent dominance.

These of course are precisely the conditions that prevail under
Bertrand competition, so this again is just an extension of an ear-
lier result for single innovations. The intuition is as follows. Given
Bertrand competition, the incumbent will always win the last auction,
and given that the loser’s profits are zero, the bid he will have to make
to win the patent is m(cr42,¢741), which is independent of which
firm wins the second last auction. But then since the only thing that
can matter in the second last auction are the profit streams of the
incumbent and follower, and these are higher for the incumbent, the
incumbent will win the second last auction, Moreover, the high-cost
firm in T—1 makes no profits in that period, none in the last and has
no bid costs, so the value of being the high cost firm is zero. But
then the bid the incumbent needs to make to win the patent in T—1
is just V(er.y1,cr), which is independent of the outcome of the third
last auction, and so on.

The zero-profit condition is therefore quite important because it
guarantees that anticipated future bid costs do not depend on the
outcome of earlier auctions. What both these results therefore show
is that it is only some of the strongest conditions for dominance or
action/reaction in the single innovation models that carry over to
sequences, and that, in general, conditions that are sufficient for dom-
inance or action/reaction in single-innovation models can produce the
opposite outcomes in at least some of the auctions in a sequence.

So far the discussion has focused exclusively on process innovation.
In much of the innovation literature no great distinction is drawn
between process and product innovation—they are both just ways
in which firms can increase their profits. For many purposes this is
perfectly correct. However, in the context of strategic innovation, it

turns out that the distinction is vital.
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2.3 Product innovation

In the sequential process innovation model just considered, as firms
move through the sequence of auctions, they will acquire a portfolio
of infinitely lived patents on various technologies. But at any time
they will only employ the least-cost technology on which they have
a patent. This is why the state of the game could be described by
specifying just these two cost levels.

Suppose now we consider a model in which there is pure vertical
product differentiation along the lines specified in, for example, Shaked
and Sutton (1986). In common with most of the literature on product
differentiation, the equilibrium concept employed is that of Bertrand
competition.

We consider a sequence of innovations producing goods of suc-
cessively higher quality, ¢;,...,974+2. Now, as the firms acquire a
portfolio of patents they will in general want to produce more than
one of the goods on which they hold a patent, since they will then
be better able to target different consumer groups with their range of
products. This makes the analysis more difficult, since in principle we
now have to keep track of the entire patent portfolio of both firms.

In Beath et al. (1987}, the problem is simplified by assuming that
there are diseconomies of scope that limit each firm to producing only
one good. Moreover, each firm can choose the quality of this good
subject to it not exceeding the highest quality good on which they hold
a patent. In this way the model is now formally very similar to that of
Vickers (1986) that we have just discussed. Despite this, the striking
result is that the conclusions are now almost precisely reversed. Very
slow technical progress is now associated with persistent dominance,
while very rapid technical change produces action/reaction.

To see why the results are reversed it is sufficient to examine how,
holding fixed the quality of the high-quality good, industry profits vary
with the quality gap between the two firms. This is shown in Fig. 2.2.
To understand the shape of this curve, note that when the gap is zero
the firms are producing identical products, and Bertrand competition
eliminates profits. As long as there is some gap this enables profits
to be made, so industry profits must initially increase with the gap.
Recall that in these models low income consumers always have the
option of not buying any of the goods. As the gap between the two
goods widens, this option looks more atiractive, so the low-quality
good has to cut its price substantially to survive, and the high-quality
firm has to do the same to compete. So profits start to fall as the gap

gets too wide.
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Figure 2.2

Since the logic of the previous arguments depended largely on
whether industry profits rose or fell with the gap between the firms,

the fact that Fig. 2.2 has precisely the reverse shape from Fig. 2.1
explains why the conclusions are reversed.

In Beath et al. (1989}, an alternative model is proposed in which the
assumption of infinitely lived patents is dropped, and patents now have
only a finite life. It is also assumed that while there are only two firms
engaged in the R&D race, there are many firms capable of producing
goods whose patents have lapsed. Their price is driven to zero, so only
the highest quality of these non-protected goods is ever bought. This
keeps the number of goods in production fixed as we move through the
sequence. However, there is a more important implication of having
finitely-lived patents. For now if the outcome of the innovation process
is persistent dominance, one firm will own all the extant patents and
will be able to act as a monopolist restricted only by the presence of
the highest-quality non-protected good available at a zero price. If,
however, the outcome of the race is action/reaction, firms will end
up holding patents on more than one good, but each of these goods
will be separated from the other goods they own by goods held by
the rival firm. The outcome of Bertrand competition between the two
firms will be the same as if all the goods were owned by separate
firms—and hence will be very competitive. In this way the nature
of competition between products is entirely endogenous to the model,
and is driven by the outcome of the innovation race, which will, in
turn, be determined by the anticipated effects on market structure
that winning or losing will produce.

Beath et al. show that if patents last for only two periods the
outcome is always persistent dominance. The reason is the same as
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that behind Result 1 of Vickers. With 2-period patents the nature
of future patent races is independent of the outcome of the current
race. Hence all that can matter in determining this are the current
levels of industry profits. But since incumbents get monopoly profits if
they win which exceed profits in any duopoly, we must have persistent
dominance. However, if patent life is extended to three periods, the
outcome of the race can be action/reaction. For while incumbents get
more profits if they win, followers are willing to pay a lot to stop them
winning, so an incumbent’s profits net of bid costs can be lower than
those of a follower.

This is another example of the possibility that market situations
which would be regarded as more competitive on the basis of static
theory, can produce a less competitive outcome under dynamic com-
petition.

2.4 Summary

The models we have been considering are undoubtedly excessively
stylized—in particular, as we will show, the omission of uncertainty is
crucial. Yet they have provided some valuable insights:

(i) single-period models can give very misleading results

(ii) there are crucial differences between product and process inno-
vation

(iii) policies which, on the basis of static arguments, may be thought
to produce more competitive outcomes can, in dynamic models,
generate less competition.

A major difficulty with these sequential models, however, is that
because the outcome depends to some extent on the anticipated future
bid costs, then the rather artificial auction construction in which the
loser effectively commits no resources to R&D, while the leader could
put in a lot, may excessively bias the results towards action/reaction.
An important feature of R&D is that resources can often be lost if a
rival manages to develop a new idea first. What we need is a model
in which each firm has to commit resources to R&D if it is to he have
any chance of innovating, but where those resources are wasted if the
firm loses. In the next section we examine a model of this kind.

3. Single innovations under uncertainty

3.1 Introduction

In the models of certainty considered in the previous section, each firm
knows that by spending a little more than their rival, they can capture
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the innovation for sure, and the only factor which is relevant in making
this decision is therefore the difference between their future profits if
they, rather than their rival, innovate. This is what the competitive
threat captures.

What is missing from the analysis is the standard investment
calculation in which increased spending on R&D is balanced against
the increase in profits over those currently being earned that this
spending will bring about. If, however, we treat investment in Ré&D
as having only a limited probability of success at any one time, though
this probability of success can be influenced by the amount spent, then
firms will face a more conventional investment decision in which they
balance the gains from bringing forward the likely date at which they
earn higher profits than they are currently getting, against the costs of
doing so. This will introduce into the analysis an incentive to innovate
that we will call the profit incentive. Notice that this incentive will be
present even if the firm were not in a race against rivals. Indeed, as
we will see, the amount of R&D expenditure generated by this force is
precisely determined by calculating the amount of investment the firm
would do if it were undertaking R&D in isolation. (Katz and Shapiro
(1987) call this the ‘stand-alone incentive.’)

However, provided the risks in R&D are imperfectly correlated
across firms, each firm still faces the possibility that its rival can
innovate before it, and so still also faces a competitive threat. As
we shall show, by understanding the relative magnitude of these two
forces, the ‘stick’ of the competitive threat and the ‘carrot’ of the profit
incentive, a great deal can be learned about a firm’s R&D strategy,
and hence about the likely outcome of strategic races in which it may
be involved.

While it may seem obvious that these two forces will need to be
taken account of in any R&D race, most of the models of strategic
innovation in the literature turn out to be special cases of the general
framework that is developed below. The reason is that they involve
assumptions that effectively limit the role that one or other of these
forces plays. Thus the profit incentive is the force on which Arrow
(1962) focuses in reaching his conclusion that a competitive market
structure is more conducive to innovation than a monopolistic one.
It similarly underpins Reinganum’s (1985) dynamic generalization of
this result where she demonstrates that the process of dynamic com-
petition is characterized by Schumpeterian ‘creative destruction.” In
contrast, the work of Gilbert and Newbery (1982) and, more recently,
of Harris and Vickers (1987) is concerned with situations where only
the competitive threat has any significant role to play, and this leads to
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the diametrically opposite conclusion that only incumbents win R&D
races.

In the next section we develop a simple, yet general, model of a
strategic R&D race between firms to be the first to introduce some
new technology or product and then, in §3.3, show how it can be used
to organize the existing literature on one-shot R&D games. It also
provides the building blocks for the discussion in §4 of a sequence of
strategic races under uncertainty.

3.2 The model

The model is a natural extension of that introduced by Lee and Wilde
(1980). The costs of R&D take the form of a flow of expenditures that
have to be incurred until the race is over (a ‘subscription’) rather than,
as in Loury (1979), being a fixed cost at the outset (an ‘entry fee’).

The model is one in which two firms are engaged in a single one-
stage race to be the first to introduce some new product or technology.
As we shall show later, there is no great difficulty in extending the
analysis to the situation where where is a (finite) sequence of races, or
where there are many stages in a single race, but most of the under-
standing of such sequences comes from understanding the outcome of
such a single one-stage race.

In general we want to allow for the possibility that firms are also en-
gaged in production which is generating current profits, and that, pos-
sibly as the outcome of some previous race, one of the firms
currently has a competitive edge over its rival enabling it to make
greater profits than it. Similarly, there is no reason to suppose that
the profits each firm makes conditional on winning or losing the race
will be the same. However, we assume that current profits and the
levels of profits made by firms contingent on winning or losing are
known with certainty.

Each firm has to decide how much R&D to do at each instant of
time. We make the assumption, common to other models, that the
probability of a firm discovering the new product or process in the
time interval (¢,{ + dt) conditional on no one having discovered by t,
depends solely on the flow rate of R&D expenditure at { undertaken
by that firm, and net on the accumulated amounts of R&D. Thus
there is no ‘learning-by-doing’ within the current state. In addition, it
is assumed that the relationship between probability of discovery and
R&D expenditure is time independent and exponential.

The hazard rate is defined as the instantaneous probability of
discovery at 7, conditional on not having discovered before . There-
fore, if one firm alone were innovating, and had chosen to spend a
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constant amount on R&D each period, thus generating a constant
hazard rate, z, say, the probability of discovery by T is

F(r;z)=1—e""".

Thus, the instantaneous probability of discovery at 7 is

f(r;z) = 0F/0r = ze™ 77,

and so, the probability of discovery at T, conditional on not having
discovered before 7, the hazard rate, is just

H(riz) = f(riz)/[1 — F(r;z)l ==,

as we know it must be.

These assumptions are strong. The absence of learning-by-doing
may appear serious but, as we shall see, is relatively easily accom-
modated by moving to a sequential framework. The restriction to
a time-independent and exponential structure is motivated solely by
tractability. Undertaking strategic analysis in any other framework
becomes extremely difficult.

The great advantage of this framework is that if one firm chooses a
constant hazard rate, then the other’s best response is also to choose a
constant hazard rate—since nothing is changed in the basic structure
of the game as we move through time.

We assume that all firms face the same innovation technology,
whereby the instantaneous resource cost of achieving the hazard rate
z is given by v(z) and that

(@) 7(0) =+'(0) =0
(ii) Yz >0, 7'(z) >0, v'(z) >0
(i) 7'(z) = +oo0 as = — +oo.

Thus there are everywhere decreasing returns. This restriction on
the cost function is not too essential—though one cannot allow for too
general a pattern of costs or there may be non-unique equilibria (see
Harris and Vickers 1987).

Let s be the current profits of the incumbent, ¢ those of the follower.
If the incumbent innovates first, the present value, at the time of
innovation, of the future profits it receives is A, while the follower’s



Strategic innovation 19

present value of future profits will be E. However, if the follower
innovates first the present value of the incumbent’s profits will be B,
while the follower’s will be D. If we let » be the common rate of
interest, then we assume that A > B; Ar > s; D > E; Dr >
where Ar and Dr are the flow rate of profits with present values A
and D respectively. Thus for both firms winning is more profitable
than losing, and is more profitable than their current position.

Let = denote the hazard rate chosen by the incumbent, y that
chosen by the follower. Let r be the common rate of interest, V' the
expected present value of profits of the incumbent, W that of the
follower. Then it is straightforward to show that

_ Az + By +s — ()

V(z,y) = P (3.1)
W) = 2t EH=106) 6:2)

We want to find the Nash equilibrium in hazard rates. To do that we
will focus on characterizing the reaction function for the incumbent
showing its profit-maximizing choice of z in response to any given
choice of y by the follower. The reaction function of the challenger
follows by analogy.

Since it will turn out that given our assumptions both firms will
choose positive hazard rates, the incumbent’s reaction function is
defined by the equation V.(z,y) = 0, where the subscript denotes
partial differentiation with respect to a variable. Now V;(z,y) = 0 if
and only if ¢(z,y) = 0, where

o(z,y) = (A - Bly + (Ar — 5) +7(z) — (2 +y +r)y'(z).  (3.3)

Given our assumptions on 7(:), ¢(-) satisfies the following conditions:

@) Yy 20, (0,y) >0
(i) Ve 20, y=0, p.(z,y) <0
(iii) Yy >0, o(z,y) = —co as ¢ — +oo.

These conditions guarantee that, for all y > 0, there exists a unique,
strictly positive and finite value for 2 for which V;(z,y) = 0, and hence
that firm 1 does indeed have a well-defined reaction function. Denote
this by p(y). Then p(-) satisfies the condition

ele(v),y] =0, Yy = 0. (3.4)
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Now, define z, by the condition

(Ar — 8) + y(z0) — (20 +7) - 7'(z0) = 0. (3.5)

Clearly, p(0) = @y and z; > 0.
We now define ¥ by

v(%) = (4 - B) (3.6)

and notice that
sign{p'(y)} = sign{wy[p(v),v]}
= sign{(4 — B) - ¢'[p(y)]}

= sign{¢'(F) — ¢'[p(y)]}.

Moreover, if for some y, 0 < y < oo, p(y) = T, then not only do we
have p'(y) = 0 but, on substituting back into (3.4), we find that p(y)
also satisfies (3.5) and hence =y = #. We therefore have the following
results:

(i) I zy <z, then Yy >0, zy < p(y) <=, and p'(y) >0
(ii) I zy=7m, then ¥y2 0, ply) =2,

(i) If @9 >, then Vy>0, 2y > p(y) > 7, and p'(y) <0.

Now, =, is simply the hazard rate chosen by firm 1 if its rival
were doing no R&D. In this case the only motivation for doing R&D
is to increase the flow rate of profits by (A4r — s). Thus the incum-
bent’s hazard rate will be chosen by balancing the gains from bringing
forward the likely date of innovation against the additional costs of
doing so. This is just what condition (3.5) involves. We will refer to
zy as the profit incentive facing firm 1.

On the other hand, what we have just shown is that T is the
asymptotic hazard rate chosen by firm 1 as y — oo. Nofice that
as y — oo, the challenger is almost certainly immediately about to
innovate. If, however, the incumbent were to instantaneously success-
fully innovate, the marginal benefit to it would be (4 — B), while its
marginal cost would be 4'(2). This then explains the definition of
in (3.6). One might also note that current profits are irrelevant in
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determining T because, as firm 2 is almost certainly going to inno-
vate immediately, these profits are almost certainly going to instantly
disappear—whoever wins. We will refer to the hazard rate T as the
competitive threat facing firm 1.

At this level of generality the relative magnitude of these two forces
can go in either direction. However, a major determinant of their
relative magnitude is clearly going to be the ease of imitation. Suppose
first of all that that imitation is impossible, so that the new product or
new technique is protected by an infinitely-lived and highly effective
patent. Then, in a wide class of cases, it will be natural to assume
Ar > s > Br since, if you lose the race, your rival will have an even
better product/process with which to compete against you, and your
profits could be lower than at present. In this case it is clear we will
have 2y < . On the other hand if imitation were very easy then we
could have Ar =2 Br > s, and we could then have z, > 7.

Having understood the nature of the two hazard rates =y and z, the
results we obtained above about the nature of the reaction function
in the various cases should now be intuitively clear. Let us therefore
briefly consider cases (i) and (iii) above.

(1} #g <&

Here the incentive to do R&D in order to prevent the challenger from
winning exceeds the incentive to undertake R&D to gain a greater
profit stream. In such a case, if the follower were to increase its R&D
effort the natural competitive response for the incumbent is {o increase
its own effort in response,

It is straightforward to show that moves along the reaction function
to higher values of y and = reduce the profits that the incumbent
makes. The reason is that such moves take the firm’s hazard rate
further and further above the level (x, ) that is optimal given the profits
it will make if it is successful.

This case is illustrated in Fig. 3.1.

(i) zg>7T

This case would arise if imitation were very easy and the successful
innovator could be easily copied. In such a situation the incumbent’s
profits would be almost the same whether it won or not. Clearly,
were this to be so, the competitive threat would virtually disappear.
Nevertheless, the innovation could still enable the firm to make sub-
stantially greater profits than at preseni, which is why the profit
incentive exceeds the competitive threat.

In such a situation there is a strong externality in each firm’s R&D:
one’s rival’'s R&D is a very good substitute for one’s own. Hence
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suppose that the follower were to increase its R&D effort. The incum-
bent’s optimal response is to do less since it is going to get more or less
the same profits irrespective of who wins and the follower is helping
to bring forward the likely date of innovation. In this case then, as
y increases and z falls along the reaction function, the profits of the
incumbent rise because although it appears to be moving away from
the hazard rate that is profit maximizing, it is really only substituting
its rival’s R&D for its own, keeping the overall date of innovation
more or less fixed, but saving in current R&D costs. There is thus a
“free-rider’ phenomenon.
This case is illustrated in Fig. 3.2.

y]l.
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Figure 3.2

We can undertake a similar analysis for the challenger, and derive
its reaction function, which again can be either increasing or decreasing
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depending on the relative magnitudes of the competitive threat and
profit incentive it faces. Moreover, the fact that, say, the competitive
threat for the incumbent is greater than its profit incentive tells us
nothing in general about the relative magnitudes of these forces for
the follower. So there will be four possible types of model, depending
on the relative magnitudes of the forces for each of the two firms.

Under sufficiently strong assumptions about the cost function (for
example that it is quadratic) then the reaction functions will have
the convexity/concavity properties shown in Figs. 3.1 and 3.2 and it is
easily checked that for each model type the Nash equilibrium is unique.

The model has straightforward comparative static properties. Thus
an increase in the competitive threat or profit incentive facing, say,
the incumbent will increase the hazard rate, z, it chooses for every
positive value of y. This will increase the equilibrium value of z.
Whether the equilibrium value of y is higher or lower will depend on
the relative strengths of the competitive threat and profit incentive
facing the challenger.

We can now establish a straightforward result about the likely
winner in the race. If we let z* and y* be the equilibrium hazard

rates, then:
if (A—B)> (D —E) and (Ar —s) > (Dr —t),

then T 2y,

If one of these two conditions is satisfied as a strict inequality, then
z* > y". Similarly, if the inequalities governing the competitive
threats and profit incentives are reversed, so too is the conclusion
about the hazard rates.

While these results are very obvious, a great deal of the literature

is covered by them.

3.3 Sorting out the literature

The first set of results we can look at are those contained in the papers
by Loury (1979), Dasgupta and Stiglitz (1980) and Lee and Wilde
(1980). These authors consider the case of identical firms competing
to enter the industry with some innovation. Thus the payoffs to success
or failure are identical, as are current profits. Hence we have

A=D1
B=E=1

a=1t=010,
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From this it follows that the competitive threats and profit incentives
are identical, that the former exceed the latter, and so the expected
outcome of the race is indeterminate.

The paper by Reinganum (1985) focuses on drastic process inno-
vations. In this case the prize structure is the following:

A=D>0
B=E=0
a>0, t=0.

From this we can see that while each party faces the same competitive
threat, the incumbent has the smaller profit incentive because it is
only for him that the innovation will replace a positive current flow of
profits. Thus we get y* > z* and so Reinganum’s conclusion that the
outcome will be one of creative destruction or action/reaction.’

It is important to notice, however that drasticness is crucial to
this argument. For suppose instead that we had process innovation,
Bertrand competition, but non-drastic innovation. We would still
satisfy the Reinganum conditions that B = E = t = 0, and that
s > 0, so the incumbent has greater current profits to protect than the
challenger. However, as we noticed in the last section, 4 > D, so the
incumbent has the greater competitive threat. Moreover, it is perfectly
possible that (4r — s) > Dr, so that the incumbent also has the
greater profit incentive. In this case the introduction of uncertainty,
far from overturning the presumption of dominance that emerges from
the model with certainty, would reinforce it.

There have been a series of papers by Harris and Vickers (1985,
1986, 1987) in which they look at the race as a mulii-stage one. We
will discuss their model in more detail in the next section, but for
the moment the features we wish to note are that they assume there
are no profits earned until the innovation takes place, and that, while
the payoffs to innovation are finite, there is no discounting. Thus
r = s ={ =10, and so there are no profit incentives: zy = yy = 0. The
winner will be the firm which faces the greater competitive threat.

Hence, while Reinganum’s result is driven by the asymmetry of
profit incentives, Harris and Vickers’ results are entirely a matter of
competitive threats. Other features of their model guarantee that
these always favour the incumbent.

*This has. of course, tu be understoud in the probabilistic sense that the
challenger is more likely to win, rather than that they actually will win.
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3.4 Summary

The introduction of uncertainty into the analysis is important, not
because, when incorporated in the natural way of uncertainty over the
timing of innovation, it is patently ‘more realistic’—we obtained many
useful insights from the models with no uncertainty—but because it
introduces an important extra incentive into firms’ R&D decisions. In
this section we have examined a relatively general model incorporating
both the competitive threat and the profit incentive, and have shown
that many models in the literature are special cases of it. While it
is certainly true that in the case of drastic innovations, where the
certainty model was indeterminate, this extra consideration tells in
favour of action/reaction, this is by no means a general result, and in
some circumstances the introduction of uncertainty can reinforce the
persistence of dominance.

We saw in the last section that it is essential to study the issue
of dominance vs. action/reaction in sequential models, but that the
certainty models we examined were somewhat inadequate since the
loser commits no resources to R&D. We now have a model in which,
in general, both firms undertake R&D, so we are now in a position
to combine these two major strands in the modelling of strategic
innovation.

4. Sequential innovation under uncertainty
4.1 Introduction

Integrating the models of §§2 and 3 is, in principle, fairly straight-
forward. Thus suppose, once again, that the two firms start off with
unit costs ¢; and ¢z, and that there is a sequence of T' cost-reducing
innovations producing the sequence of unit costs, es,...,¢r42, where
€rp1 > €pgpz, T = 1,...,T. The first race the firms enter is that for
the patent on ¢;. As soon as one of them succeeds in discovering the
technology for c3, they get an infinitely-lived patent on it, and they
both start to undertake R&D to discover the technology for ¢4, and
so on.

The way in which we could determine the outcome of the race
is then as follows. First, recalling the definitions of the functions
V(cry2,¢1) ete. in §2, we clearly have Yk =1,...,T + 1,

Viersa, en) = mlerqa e }/r; View,eryn) = mler, craa)/r.  (4.1)

Now consider the final race. The two firms enter this with one
holding the patent on c¢r4,, the other with the least-cost technology
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on which it holds a patent being ¢;, k=1,...,7. Let
A = V(eTiz, cr); B = V(eT41,cT42)

D =V(eryz,err1); E = V(e ery2)

8 = w(cryr,Cr); t =w(cr,cre1)
Using the model employed in §3, solve for the equilibrium values z*
and y*, and substitute the values of these and of the above parameters

into the formulae for V and W given in (3.1) and (3.2). Then

Viersner) =V V(ep,erya) = Wl

By repeating the process of backward recursion we can, in principle,
solve the value functions and associated levels of hazard rates (R&D
expenditures), in every state, and in every race. We can then start
in the first race, work out the likely winner, and, assuming this is the
winner, move on to the second race, work out the likely winner, and
in this way, determine the entire outcome of the sequence of races.

There are, however, a number of issues to confront before reporting
the results of this analysis.

The first is that some of the assumptions made in the previous
section, which seemed perfectly natural in the context of a single
innovation, need not hold in a sequential framework. For example,
there is no guarantee in general that 4r > s. This is simply because
while winning an innovation may bring greater current profits =, the
firm may have to incur such large R&D expenditures in the attempt to
maintain their leadership in future races that the present value of their
net future income is less than their current gross profits. In itself this
causes no great difficulties in characterizing the incumbent’s reaction
function. For example, if 47 < s but 4 > B, so the incumbent has
a zero profit incentive, but positive competitive threat, then all that
happens is that there exists a ¥ > 0 such that the incumbent’s optimal
choice of = is zero if ¥ < ¥, and positive and increasing in y for y > .
This is illustrated in Fig. 4.1.

The real difficulty is that the equilibrium now need not be unique.
This is illustrated in Fig. 4.2, where the challenger also faces a competi-
tive threat that is greater than its profit incentive. Recalling that when
the competitive threat exceeds the profit incentive then a firm’s profits
are strictly decreasing in its rival's hazard rate, it is clear that in this
particular case it would be natural to choose as equilibrium the point
(0,v4), since this Pareto-dominates the other equilibria. However, in
other cases there may be no obvious equilibrium to select.
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Notice also that this non-uniqueness does not arise because of the
nature of the hazard cost function v(z), and cannot be removed by
strengthening the assumptions on it.

Even were there no problem of non-uniqueness, analytical results
are extremely hard to obtain with these models.? Because the equilib-
rium values of R&D expenditures in one race enter the present values
A, B, D, and E that appear in the previous R&D race, we need to
have a fairly explicit link between these equilibrium levels of R&D

*Analytical results have been obtained by Harris and Vickers (1987) for the
case of a one-dimensional tug-of-war. where the fienn that conmumits mest resources
to R&D will be more likely to move one stage nearer their goal, sitnultaneously
taking tleir rival one step futher away from theirs, Moreover. in their model there
is a sequence of stages 0w single noovation. and firms earn no profits until the
innovation is discovered. In addition. although the prizes are finite, there is no
discounting.
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expenditure and the parameters of the associated R&D race in order
to be able to link together what is happening in the various races. In
the certainty model this link was extremely simple, but nevertheless
we found that analytical results were fewer than in the single-period
model. In the model with uncertainty the link between equilibrium
levels of R&D expenditure and the parameters of the model cannot
be expressed in a simple closed form, even for the quadratic form of
the cost function v(-), and this is why analytical results are so hard to
obtain.

For both these reasons the results we report below come from
computer simulation models. For the cases we report, we have been
able to check that all equilibria are unique, so nothing depends on an
arbitrary choice of a particular equilibrium. The loss of generality from
resorting to explicit calculation is compensated for by a fairly rich set
of results which give us a good feel for how some of the essential
features of the models affect their outcomes.

Another issue we must confront concerns the nature of the inno-
vative process. In the description given above, and implicit in all the
models discussed so far, is the assumption that at all times firms are
competing for the same innovation. This means that although one
firm has a patent on a technology that prevents everyone from using
it, nevertheless all the relevant technological information has become
common knowledge and, moreover, those who were unsuccessful in
the previous race are just as able to exploit this common knowledge as
the firm which discovered the new technology. This latter assumption
rules out learning-by-doing between races—we have already had to
rule it out within races. These assumptions imply that however large
a gap a firm opens up with its rival it always faces the danger of being
leapfrogged by it.

An alternative, equally strong, assumption that we could make is
that either because technological information does not become com-
mon knowledge, or else because there are extremely strong learning-by-
doing effects, each firm essentially has to discover each technology by
themselves before they can move on to discover the next. In this case,
al any one time, the incumbent and the challenger will be competing
for different innovations. If the incumbent firm succeeds before the
follower it will pull ahead of its rival, while if the challenger succeeds
first it will simply move one stage closer. In this case all it can do is
catch up—it cannot leapfrog. It is precisely this cateh up framework
that has been employed in the recent models of Harris and Vickers
(1985, 1987), albeit in a somewhat different setting where firms are
engaged in a single multi-stage race rather than a sequence of different
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races. In what follows we will examine the difference between models
in which leapfrogging is a possibility, and those in which the structure
of moves is that of catching up, but, to maintain comparability, will
do so in the context of a sequence of innovations.

Consider then our sequence of T cost-reducing innovations. To
make sense of the move structure we are going to employ, it will help
to think of ¢r; as some absolute minimum cost level beyond which
costs cannot be further reduced by any subsequent innovation. This
means that if one firm has succeeded in lowering its costs to e1i2
it undertakes no further R&D. The other firm may continue to do
R&D until its costs too have fallen to ey42, but it is possible that
this firm will have given up at some stage before this. In this way the
actual number of races run is endogenous to the model. Formally the
structure of the catch up model is specified as follows:

(i) V(ersa,cry2) = w(erya,eria)/r

(ii) If we are now in the position where the incumbent has er4, and
the challenger has c¢r41, then the only issue is whether the challenger
does any R&D. So consider a race of the kind studied in the previous
section in which 2* = 0; B = D = V(cr42,¢T+2); 8 = m(cT42,0141);
t = w(ert1,er42). Then, if Dr < ¢, y* = 0, while if Dr > ¢ then
Yo > 0, and y* = y,. Insert these values into (3.1) and (3.2) to obtain

Viersaers1) = Vs Viersr,erqs) = W (4.2)

(iii) Proceeding by backward recursion we can in a similar fashion
define V(eryz,ck)and V(cp,e742) forall k =1,...,T + 1.

(iv) Suppose now the incumbent has costs ¢j, j = 2,...,7 + 1, and
the challenger has costs ¢;, 1,...,7 and that the value functions have
been defined for all greater cost levels ¢, j' > j for the incumbent, and
ciry k' > k, for the challenger. Let A = V(cjy1,¢r); B = V(cj, che1);
D = V(ekt1,¢j); E = Vlek.cja); 8 = m(cj, cet1); t = m(cx, cj).

Using the ideas of the previous section, determine the equilibrium
values z*, y*, and insert all these values into (3.1) and (3.2) and so
determine

V(cjser) =V : Ver,c;) = W. (4.3)

(v) Proceeding by backward recursion, we can determine in this
way all the value functions and associated hazard rates for all possible
cost combinations of the incumbent and rival.

(vi} We can now work forwards to determine the outcome of the
sequence of races.



30 Beath, Katsoulacos and Ulph

Intuitively we would expect that models with a leapfrog structure
will produce very different outcomes from those with a catch up struc-
ture. In a catch up model, if the incumbent can open up a sufficiently
large gap then even if the rival firm puts in a lot of R&D and innovates
ahead of its rival, it will still be a long way behind, and will face the
prospect of having to continue to put in a lot of R&D to try to close
the gap further. Its profits if it wins may not be much greater, if at
all, than if it loses, so it faces little competitive threat. Similarly the
incumbent will recognize that its profits if it loses will not be much
lower than those if it wins, and so will also have a small competitive
threat. Thus R&D effort on everyone’s part should fall as the gap
widens. However, anticipating this at an earlier race when the gap may
be smaller, the incumbent faces lower future R&D costs if it wins the
race than does the challenger, and while this by no means guarantees
persistent dominance, it certainly makes it more likely. What we
would expect then, is that if the incumbent and challenger start off
fairly close together, and the rate of technical change is not very
great so the incumbent cannot rapidly get too far ahead, then a far-
sighted challenger may realize that if it can catch up, while R&D levels
will be high, they will be more or less the same for both incumbent
and challenger, and in this case the outcome is more likely to be
action/reaction.

By contrast, with leapfrogging the leader can always be overtaken
however large the gap, and may face the prospect of greater compet-
itive threats and hence more R&D expenditure, the greater the gap
gets. In this case we expect action/reaction to be the more likely
outcome.”

To test out these intuitions we turn to the results of our computer
simulations.

4.2 The results

The results we report were based on the following model. The two
firms produce an identical product. The demand for this is given by
the constant elasticity demand curve

p=5%q"", (4.3)

where p is the price, @ total output, £, 0 < € < 1, is the inverse
elasticity of demand, and 5 is a parameter reflecting the size of the
market.

SFudenberg et al (1983) have stressed the nuportant role that allowing the pos-
sibility of leapfrogeing plays in determining whether the outeome of the innovation
process is one of persistent dominance.
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There are T cost reducing innovations. Technical progress occurs
at the constant rate g, where

g=[ckg'rck+1}—1 k=T oo {4.4)

The R&D cost function is quadratic, i.e. y(z) = z?, r > 0 is the rate
of interest.

In addition to varying these parameters we also varied two main
structural features of the model: whether the nature of market compe-
tition was Cournot or Bertrand; and whether the structure of moves
in the sequence was leapfrog or caich up.

It turns out that the latter tend to be more significant, so we will
report results for the cases where the parameters §, T and ¢ are fixed
at 10000, 15 and 0.5 respectively, and where the pair of parameters r
and g take on the two sets of values (0.05,0.05) and (0.01,0.01). The

results we obtained from the simulations were as follows:

If we start with the case where the market equilibrium is that of
Bertrand competition, and where the move structure is cafch up, then
the outcome is one of persistent dominance. Moreover, while the
hazard rates chosen by the two firms in the initial race were very high
(2* = 7554, y* = 3780 for the case where r = g = 0.05), they rapidly
fell until, after six races, the challenger had given up completely and
the hazard rate chosen by the incumbent was 33. This is precisely
what we would expect from the work of Harris and Vickers.

In contrast, if the move sequence is leapfrog, and the market equi-
librium is again Bertrand, then while the last races in the sequence are
again characterized by persistent dominance, in the early stages there
is action/reaction as the firms jockey for the persistent leadership of
the later races. The higher growth and interest rate are associated
with dominance over a smaller number of races. However, the striking
feature is that as the gap widens between the two firms throughout
the phase of persistent dominance, the levels of R&D spending rise
sharply as well, reflecting the greater threat the leader faces of being
leapfrogged by its rival.

If we retain the assumption that the move structure is leapfrog
but now introduce Cournot competition, then the outcome is one of
action/reaction in every race, and this is true for both sets of values
for 7 and g. '

However, probably the most interesting sef of outcomes arose when
the move structure was cafch up and the market equilibrium Cournot.
Here, in the case where the rate of technical progress (and the rate
of interest) was 5 per cent, the incumbent wins the first 9 races,
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opening up a considerable gap between the firms. The challenger
then completely closes the gap, and thereafter whenever one firm pulls
ahead the other immediately puts in more R&D effort and closes the
gap again. However, when the rate of technical change and rate of
interest are at 1 per cent, the challenger always closes any gap that
opens up, and in this sense we have action/reaction all the time.

Thus it still remains true that Bertrand competition produces ‘more’
dominance than does Cournot. However, unlike the case of certainty,
where, with a leapfrog move structure Bertrand competition always
produced dominance, with the introduction of uncertainty this result
is no longer true, and it can produce action/reaction, at least over
some of the races in a sequence.

Similarly, while in the work of Harris and Vickers where the
sequence of races were stages in a single race, it was shown that
the catch up move structure always produced dominance, in the case
of a sequence of races this is no longer the case, and we can get
action/reaction when there is Cournot competition and low rates of
technical change.

However, drawing on a range of simulations not reported here, we
can say that the combination of leapfrog moves and Cournot compe-
tition almost always produces action/reaction, while the combination
of caleh up moves and Bertrand competition almost always produces
persistent dominance.

4.3 Summary

We have seen that in modelling a sequence of races under uncertainty it
is important to distinguish cases where there is rapid dissemination of
information and no strong learning-by-doing effects, from those where
there is poor dissemination or strong learning-by-doing. While the
latter by no means guarantees that there will be persistent dominance,
it certainly makes it more likely.

However, there are very few analytical results available for models
of this kind, and a great deal still remains to be learned.

5. Conclusions

The literature on strategic innovation is somewhat bewildering with a
variety of results being produced by a host of special models each
built on rather different assumptions. Moreover, as is clear from
the interchange between Reinganum (1983) and Gilbert and Newbery
(1984), it is frequently difficult to decide just which features of these
individual models are responsible for producing the results. In this
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chapter we have tried to provide a coherent framework within which
these various models can be set, thus making it considerably easier to
understand what is really driving the various results.

In undertaking this exercise, however, we have had to narrow the
focus of much of the work covered. For example, we have conducted
the entire discussion in the context of having just two firms involved in
technological competition. Though in many cases this is not essential,
and results have been obtained in a multi-firm context, there are some
areas, such as sequential product innovation under uncertainty, where
we have as yet no formal models, let alone results. In addition, we have
focused exclusively on the positive predictions of the theories and have
neglected some of the normative features which have often been the
motivation for the work.

It is also important to be aware of some of the limitations of the
literature we have surveyed. The competition we have been exam-
ining has taken the form of a fournament where there is a single
prize to be won by whoever comes first. While this is no doubt a
useful description of some kinds of technological competition, there
are important lessons to be learned from non-tournament models of
the kind surveyed in Dasgupta (1986), where there are still strategic
issues of using innovation as an entry barrier. Even within a tourna-
ment framework, much of the literature, by implicitly using a leapfrog
move structure, has focused exclusively on the incentive to innovate,
rather than the opportunity to do so. Although the catch up move
structure introduced by Harris and Vickers goes some way to redress-
ing this, it is equally special, and more attention needs to be paid
to information dissemination and imitation. In particular, it would
be important to allow firms to choose between a strategy of making a
number of small innovations where information may be rapidly dissem-
inated and leapfrogging might take place, and that of going for a larger,
riskier innovation which could take longer to develop, but where the
catch up move structure may better describe the rivals’ opportunities.

Finally, the literature has concentrated almost exclusively on con-
ditions in the product market, and much remains to be done to under-
stand how innovatory success is linked to factors such as the internal
organization of the firm, access to financial markets, and the nature

of the labour markets firms face.®

SThe papor by Bhiattacharva and Riktter (19830, discusses some of the issues
thiat arise in the financing of inuovation, while the paper by Ulph and Ulph (1988)
explores the way in whiclh laboue mavket conditions can affect a finin's success in

innowvation,
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